Collaboration and security in CNL's virtual laboratory

Andrew Tokmakoff¹, Yuri Demchenko² and Martin Snijders¹

WACE 2004, Nice, Fr.

The CNL Virtual Laboratory

- Our focus is to demonstrate a Virtual Laboratory that could be commercially operable.
 - Consortium of partners includes:

Corus, FEI, DSM, Philips, The University of Amsterdam and The Telematica Instituut.

- Moving from Academic Collaboratories towards Industry-based:
 - Business and Security aspects require more attention

Virtual Lab Usage Scenarios

	Scenario 1: Virtual Laboratory Unlimited	Scenario 2: Customer watching over the analyst's shoulder	Scenario 3: Outsourcing and collaboration
Summary	Instruments are remotely accessed and controlled. Analysts collaborate remotely and with external experts.	Instruments are locally operated. Customers watch during the analysis and discuss results with the analyst.	Parts of the analysis are outsourced, including operation of instruments. The inquiring and the executing analyst collaborate on analysis of the results achieved.
Lab instruments	Outsourced	In-house	Outsourced
Analysis knowledge	In-house with external consultation	In-house knowledge and customers' knowledge is shared	In-house with external consultation
Measurement knowledge	In-house with external consultation	In-house	Outsourced

 Is a function of "who owns the instruments" and "who provides the analysis/operator expertise"

Key Functional Requirements

- Collaborative Remote access and control of Lab Instruments
 - Flexible to allow new Instruments and Control apps to be added.
- Security
 - Job data Integrity, Confidentiality (commercially sensitive data).
 - Restrict instrument access to authorised users at the "scheduled" times.
- Business Enablers
 - Metering and Charging
 - Sample Tracking and Tracing
 - Resource Scheduling
- Interoperability with emerging Scientific Computation Infrastructure standards (OGSA - Grid)

Job-centric Approach

- Jobs are a "key concept"
 - Basic unit of transaction everything revolves around them
 - Contains:
 - Job processing information (workflow),
 - details regarding the sample(s) to be analysed,
 - the customer who commissioned the work,
 - the instruments (denoted as Resources) used within the Job,
 - the users (and their Role) in the Job.
- Security on Jobs
 - Authorisation of Actions based upon Role and Job Context (RBAC)
- Collaboration workspaces are based upon Jobs

System Architecture

Software Development Approach

- Evolutionary Delivery
 - Start with an initial system concept.
 - Subsequent Requirements and System Design.
 - Iterate: Develop a version, deliver it, obtain and act on feedback.
 - Deliver final version.
- Design-to-Tools Philosophy
 - Build in features that have clear Component
 (e.g. libraries/application platforms) support
- Leverage Existing tools/components
 - Tomcat/Apache, Chef, Globus, JMF, VNC, Surabaya, Syncshare

Virtual Laboratory Portal

Collaborative Tooling

TEM Instrument Tool

Remote Desktop - XPS

Accessing Remote Data

Simplified XACML request

```
<AAA:AAARequest>
  <Subject>
      <SubjectID>UserABC@collaboratory.nl</SubjectID>
      <Role>Analyst</Role>
      <JobID>12a4d5-e44a2b/JobID>
      <Token>2SeDFGVHYTY83ZXxEdsweOP8Iok</Token>
  </Subject>
  <Resource>
      <ResourceID>
            http://res.collaboratory.nl/XPS-Philips1
       </ResourceID>
  </Resource>
  <Action>
      <actionID>ControlInstrument</actionID>
  </Action>
</AAA:AAARequest>
```


Simplified XACML response

```
<AAA:AAAResponse>
  <Result ResourceID=http://res.collaboratory.nl/xPS-Philips1>
      <Decision>Permit
      <Status>
            <StatusCode value="OK"/>
            <StatusMessage>
                  Request Succeeded
            </StatusMessage>
      </Status>
  </Result>
</AAA:AAARequest>
```


Summary

- CNL is a "typical" use-case for the OGSA Security Framework.
- CNL's Security approach:
 - Uses Web Services security technologies and the generic AAA Architecture with a XACML policy-based access control model.
 - allows fine-grained access control and cross-organisation identity management using the VO concept (OGSA).
- Currently in a validation phase.
- Will continue implementing CNL as a VO and adding more business enablers.

Questions? Offline demo also possible

Andrew.Tokmakoff@telin.nl

